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CONVERGENCE OF 
INTERPOLATING CARDINAL SPLINES: 

POWER GROWTH 

BY 

S. D. RIEMENSCHNEIDER* 

ABSTRACT 

Let f(x) be the restriction to the real axis of an entire function of exponential 
type r < rr and of power growth on the axis. Then the nth order cardinal spline, 
~ , f (x ) ,  interpolating f(x) at the integers converges uniformly on compacta to 
f(x). This is also true of the respective derivatives, An example shows that 
exponential type ~r is not necessarily permitted. The proof utilizes distribution 
theory and estimates on the derivatives of the Fourier transform of the 
fundamental spline L,(x). 

For a natural number n, the space b°, O F~ = {S(x)} of cardinal splines with 

power growth and of degree n - 1  is taken to consist of those functions 

satisfying: 
i) S E C " - 2 ( - o %  +o,); 

ii) IS(x)[ = e ( l x l  s) for some s-_>O; 

iii) S(x)  reduces to to a polynomial of degree at most n -  1 on each of the 

intervals Iv + (n/2), v + (n/2)+ 11, v ~ z, i.e. S(x)  has knots at the integers or 

half integers if n is respectively even or odd. 

For a sequence y = {y~}S~-_~ C y ,  y~ = {y: y~ = ~(I u ] ' ) l u  I ---> +~}, there is 

a unique element 37.y E 5e. N F~ interpolating the given data at the integers, i.e. 

~ , y ( u ) =  y ,  u ~ Z .  The present paper deals with the following questions: 

Suppose that the data y = {y.}S= ~ arises from some "suitable" function / by 

y~ = f(v) ,  v E Z. When does ~ . f ( x )  converge to f (x )  and in what sense is the 

convergence? What are the "suitable" functions? 

Questions of this type have been studied by I. J. Schoenberg [7], [8], [9], 

Richards and Schoenberg [5], and Marsden, Richards and Riemenschneider [3]. 

In the monograph [9], Schoenberg raises the question as to the existence of a 
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comprehensive theory that would cover the various known cases of convergence. 

In this report, some new results are given which are based on the work of R. R. 

Goldberg [1] and which is believed to lead towards a comprehensive theory with 

the aid of distribution theory. 

In Section 2, the uniform convergence on bounded sets of 5f, f ( x )  to f (x)  is 

shown in the case when f(x)  is the restriction to R of an entire function of 

exponential type r < or with power growth on the real axis. In the final section, 

an example is given to show that the above theorem cannot be strengthened to 

allow exponential type or. 

1. Preliminaries 

The fundamental cardinal spline, L,(x),  is the unique element of 5e, which 

interpolates the data y~ = 0, v#  0, yo = 1. The unique element ~ .y ( x )  ~ ow. N/7, 

interpolating y E Y~ admits the representation 
+ ~  

(1.1) 5C.y(x) = ~ y.L.(x - v), x E R 

(Schoenberg [8]). 

An important role is played by the Fourier transform representation of L. (x), 

(1.2) L , ( x )  = ~ -~ [$./d~.(u)]e'"Xdu 

where O,(u) --- [(2/u)sin u/2]" and ~b.(u) = E;:_~ ~0,(u + 2orj) (see Schoenberg 

[6], [7], and [8]). Its pertinence to convergence results was demonstrated in [3]. 

In [3], it was shown that < m i n  [1,(or/u)"] and that (qJ,/c~,)(u) 

converges uniformly to Xt-,,.,~l(u) outside arbitrarily small intervals about -x-_ or. 

The object of this section is to extend these results to the derivatives of ~0./~b,. 

THEOREM 1.1. 

i) 

(1.3) 

and 

ii) 

(1.4) 

Let  s be a natural number  >- 1. Then 

/or 2ork -or<-_u <=2ork +or, k E Z ,  k # 0 ,  -x-_l, 

I /d l  \0) = 

/or e,., : or(s + l ) log  n /n ,  and  O < ] u [ <= or - e , .sor  or + e,,, <- [ u [ =<3or, 

I / d~ \(') 
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PROOF. 

(1.5) 

and to observe that for any integer k 

(1.6) f ( u ; n ) =  ( -  llk"{(u - 27rk) -" 

INTERPOLATING CARDINAL SPLINES 

It will be convenient to introduce the function 

+ ~  

f(u;n)= ~ (-Iy"[u-27rjl-" 

+ ~ Cj,.(u-2~rk)} 
i=! 
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where Ci, ,(u)=>0 for 0 <  u =<Tr and Q, .  (u)_-__0 for -~-_-<u < 0  (see [3, prop. 

1.2]). Finally, 

(1.7) [u"f(u;n)]-'=(qJ,/Cb,)(u), u~2rrk. 

Let D denote the differentiation operator, and let the letter A denote an 

absolute constant which is independent of u and n (but not of s) and which may 

change from line to line. Further, all inequalities are assumed to hold for n 

sufficiently large. 

For 2rrk-Tr <= u <-_2rrk + rr, u~  2rrk, k~O, (1.6) and (1.7) can be used to 

obtain 

I O(~O°/4~.)(u)l <- a I klnllu"+'f(u ;n)(u - 2~-k) I]-'. 

By the periodicity of I f(u ; n)l and the fact that I u"f(u ; n)[- '  -< 1, it follows that 

(1.8) [ D(6. /&.)(u )[ <-_ a l k In I u - 2rrk I"-~ [ u I-"-', 

and, consequently, 

[D(tp./ck,)(u)] <-a Jk ] nTr"-'[Tr min{IZk - l l , ] 2 k  +1]}] -"-1 

for 2~rk - T r N u  _-<27rk + ~" and k / 0 ,  -+1. 

For k = +- 1, and ~ + e,,, N I u I _-_N 31r, equation (1.8) gives 

I o(@./4,°)(u)l --- A n ( l -  2log n),_,__<n AIn. 

Finally, for k = 0, and 0 _<- i u ] --< rr - e,, ,, notice that Ej~,o(- 1)J"j[u - 2rrj]-"-' 

= 6(rr-").  Hence, we can obtain 

IO(O,/&,)(u)t <=anrr-" lu I"-' 
(1.9) 

<= An( l -21°r ig  n)"- '  =< A/n.  
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The argument is carried over to arbitrary s by induction on equations of the 

form (1.8) and (1.9). First assume that for 2 ~ k - ~ r  <= u < 27rk + 7r, u fi 27rk, 

k ~  0, and any m, 1-< m < s, there holds 

(1.10) ]D"(q , , /4 ) , ) (u ) l<=A[k[nmlu-27rk l" - ' lu . I  -"-'. 

From the nature of the function f(u; n), Leibnitz's rule yields 

(1.11) [ D'[u"f(u;  n)]/u"f(u; n)][ <- mn'  l u -2Irk] '. 

Finally, equations (1.10) and (1.11) combine with Leibnitz's rule on the product 

[u"f(u; n)](~,/rb,)(u) to obtain equation (1.10) for m = s. 

Using (1.10) with m = s in the same manner that (1.8) was used above, we 

readily obtain the theorem except for the interval 0 _-< I u [ =< rr - e .... 

For the remaining case, assume that for 0 < I u I < 7r and 1 _-< m < s, there 

holds 

(1.12) } D' (q,° l , t , . ) (u )l <= A in I" I u " - "  17r-". 

Since (1.11) holds even with k = 0, (1.12) and (1.I1) combine with Leibnitz's rule 

to yield (1.12) for m = s. Then (1.12) can be used to finish the result. The 

theorem is proven. 

COROLLARY 1.3 F o r T r - e , , , <  l u l  .... 1(4,°/6°)(u)1 

2. The main results 

I. J. Schoenberg [10] ha.s shown a convergence result when the cardinal splines 

interpolate a function which is the Fourier-Stieltjes transform of a bounded 

measure on [ - 7r, 70. (See Theorem 2.3 below.) The next step beyond measures 

is to obtain a theorem for Fourier transforms of distributions with support in 

[ - ~ , r r ] ,  particularly, since the Paley-Wiener-Schwartz theorem (see [11, p. 

311]) gives a 1-1 correspondence between entire functions of exponential type 

T ~ 7r with polynomial growth on the x-axis and Fourier transforms of such 

distributions. In a different context, R. Goldberg [1] essentially began the 

discussion that follows. 

Let y = {y~} E Ys, then there is a 27r-periodic distribution T -  whose Fourier 

series is 
+ ~  

(2.1) T - =  ~ y~e '~' 

where the series converges in the sense of tempered distributions. The Fourier 

transform of T -  is given by 
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(2.2) ~ ( T ) =  Z y,6, 

where & is point evaluation at v, v E Z. 

THEOREM 2.1. Let y = {y~} E Y~. Then the nth order cardinal spline, ~.y(x) ,  

which interpolates the data y at the integers is the Fourier transform of the tempered 

distribution ( T~ 6,/  4), ) i.e. 

(2.3) ~ ,y  = ~ ( T -  6./~b.). 

PRoov. The cardinal,spline is visibly given by the convolution ~ , y ( x ) =  

( ,~ (T- )*L , ) (x )=  (~(T-)*J(~O./ck,))(x). Since ~0,/~b. is a quotient of cosine 

polynomials and qS, (u) > 0 (Schoenberg [6]), a standard theorem from distribu- 

tion theory gives the result (see [11, chap. 30]). 

We now determine how Theorem 2.1 can be used to help solve the 

convergence problem. The 2rr-periodic extension, T- ,  of the distribution T with 

support in ( -~- ,  7r) is essentially the (generalized) derivative of some 2rr- 

periodic function. The distribution theory will allow us to formally integrate by 

parts, and then apply the estimates in Theorem 1.1 on the derivates of qJ,/~b,. 

THEOREM 2.2 Let f(x) be the restriction to R of an entire function of 
exponential type r < 7r which has polynomial growth on the real axis. Then, for 

any natural number s, 

(2.4) ! im [ (~ff)" '(x ) -  f(~)(x ) ] = 0 

uniformly on bounded subsets of R. 

PROOV. By the Paley-Wiener-Scwartz theorem, there is a unique distribution 

T with support in [ -  r, r] such that ,@(T)(x) = f(x). Further, there is a natural 

number r and a continuous function h with support in ( -  ~', ~') such that for any 

test function ,;b, (T, ~b) = (h ('), ~b) = ( -  1)r(h, q~r)). Let T-  be the 2~--periodic 

extension of T and let h -  be the corresponding 27r-periodic extension of h. Let 

D represent the differentiation operator. 

Since qJ,/8, and its derivatives to order r decrease to zero as [u I ~  + ~  

(n > r + 2 say), the function ~. f (x )  may be written as 

& f ( x )  = ~ ( r - 0 . / ~ , ° ) ( x ) =  ( -  1)' h_(u)Dr[e,X.~.(u)/4~.(u)]du. 
27r _® 

Also, ~ ( r ) ( x ) =  [ ( -  1)r/2~r]f*-;h(u)D'[e'XU]du. 
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For s = 0, we need to estimate 

I ,~(T-qJ./ck.)(x)- ~(T)(x) l  

(2.5) = (1/2~r) h-(u)D'[e~"4,.(u)/rb,(u)]du 

h(")O'Ie'x l u I. 

Using Leibnitz's Rule for differentiation, and breaking the integration over 

intervals of the form 2~rk - ~r _-< u _-< 2rrk + 7r, the various parts of (2.5) can be 

estimated. For k ~ 0, -+ 1, and I ->_ 0 an integer, a typical term of (2.5) will involve 

D'[(O,/4),)(u)]D'-'[e~X~], and Theorem 1.1 will allow the estimate 

f 2~tk+~" 
Ix[ r-' O'[(qJ,/c~,,)(u)]l ]h-(u)]du 

J 2 ~r k - rr  

f- <--[xl'-'nt(N/N)-"lk[ -" [h(u)ldu. 
~r 

Hence, the integration on (-o~, -3"rr] and [37r, oe) will be majorized by a finite 

linear combination of sums of the form [ x 1~-'n'(3/2) -" Z~r=21 k 1-", which tend 

to zero uniformly on bounded subsets of R as n ~ + oo. 

On [ -3z r ,  37r], the support of h -  will not intersect intervals of length 

27r(r + 1)log n/n centered on +--7r for sufficiently large n. Thus, by equation 

(1.4) for l > 0, [ D'[(q~./,b.)(u)][ = 6 ( n - ' ) ,  and the terms in (2.5) involving these 

derivatives over the interval [ - 37r, 3zr] will also converge to zero uniformly on 

bounded subsets of R as n ~ + oo. 

The remaining two terms are dominated by 

(1/2zr)[x 1' [ h(u)[  [1-qJ./c~.(u)[du+ [h - (u ) [  [qJ./~b.(u)[du 
,rr -<-]u 1~3~" 

which also converge to zero by nature of the support of h [3, prop. 1.2]. 

Therefore,  the theorem is proven for the case s = 0. 

The case s > 0 introduces a power t ' into the integrals to be estimated. On 

[27rk - 7r, 2zrk + ~r], the power t ' is bounded by a constant times [ k 1~. For large 

n, the I k 1-" estimate in (1.3) dominates and the argument carries through as 

before. 

In the case of a bounded measure, the estimates in proposition 1.2 of [3] and 

the fact that qJ,/~b, (--- zr)--* 1/2 can be applied directly with Theorem 2.1 to yield 

the following theorem of Schoenberg without the restriction of n even. 



VOI. 23, 1976 INTERPOLATING CARDINAL SPLINES 345 

THEOREM 2.3. Let f ( x  ) = (1/2 ¢r ) f~_,eiXU dlx (u ) for iz a bounded measure on 

[ -  rr, rr). I f  tz has no atom at - rr, then ~ , f ( x  ) converges uniformly to f ( x  ). I f  

tz = 6_., then 5f, f ( x )  converges uniformly to ~[f (x)+ f ( - x ) ]  = cos rrx. 

3. An example 

It is natural to ask whether the restriction to exponential type < rr can be 

dropped from Theorem 2.2. In any case, such convergence would have to be 

interpreted modulo an additive term of the form P(x)s in  rrx. Recently, D. J. 

Newman [2] has provided a counter-example to uniform convergence for 

bounded exponential type 7r. Below we provide a counter-example to uniform 

convergence on bounded sets for exponential type rr and power growth on the 

axis. 

For the data z~ = ( - 1 )  °+', v E Z  + , z ~ = ( - 1 )  ~, v E Z - o r  v = 0 ,  Richards[4] 

has shown that 37.z(I/2) is asymptotic to (2/rr)log n. The formal Fourier series 

E+~7 ~ zve ' '  exists as a tempered distribution and equals 1 + g(2)(t) where g(t)  is 

the continuous periodic function given by g(t)  = I y s7 ~ [z~/(iv)2]e T M  ([ 12, corol. 
v , ~ O  

2.4-3b, p. 51]). Let T be the distribution defined by 

( T , ~ ) =  f ~  dp(t)dt+ f ~  g(t)qb(2)(t)dt. 

The Fourier transform of T is given by 

f 
r r  

~ ( T ) ( x )  - sin rrx + f/x) 2 g(t)e,X,dt. 
rrx 2 rr . 

Thus, ~ ( T ) ( v ) =  zv. This is an entire function of exponential type 7r whose 

restriction to R is of power growth and which interpolates the data z~ at the 

integers. 

REFERENCES 

I. Richard R. Goldberg, Restrictions of Fourier transforms and extension of Fourier sequences, J. 
Approximation Theory 3 (1970), 149-155. 

2. D.J. Newman, Some remarks on the convergence of cardinal splines, M. R. C. Report # 1474. 
3. M. J. Marsden, F. B. Richards, and S. D. Riemenschneider, Cardinal spline interpolation 

operators on I p data, Indiana Univ. Math. J. 24 (1975), 677-689. 
4. Franklin Richards, The Lebesgue constants for cardinal spline interpolation, J. Approximation 

Theory 14 (1975), 83-92. 
5. Franklin Richards, and I. J. Schoenberg, Notes on spline functions IV. A cardinal spline 

analogue of the theorem of the brothers Markov, Israel J. Math. 16 (1973), 94-102. 



346 s . D .  RIEMENSCHNEIDER Israel J. Math. 

6. I. J. Schoenberg, Contributions to the problem of approximation of equidistant data by analytic 
functions, Quart. Appl. Math. 4 (1946): Part A, 45-99; Part B, 112-141. 

7. 1. J. Schoenberg, Cardinal interpolation and spline functions, J. Approximation Theory 2 
(1969), 167-206. 

8. I. J. Schoenberg, Cardinal interpolation and spline functions II. Interpolation of the data of 
power growth, J. Approximation Theory 6 (1972), 404-420. 

9. 1. J. Schoenberg, Cardinal spline interpolation, in Regional Conference Series in Applied Math. 
12, S.I.A.M. Philadelphia, 1973. 

10. I.J. Schoenberg, Notes on spline functions IlL On the convergence of the interpolating cardinal 
splines as their degree tends to infinity, Israel J. Math. 16 (1973), 87-93. 

11. F. Treves, Topological Vector Spaces, Distributions and Kernels, Academic Press, New York, 
1967. 

12. A. H. Zemanian, Distribution Theory and Transform Analysis, McGraw-Hill, New York, 
1965. 

DEPARTMENT OF MATHEMATICS 
UNIVERSITY OF ALBERTA 

EDMONTON, CANADA 


